ROLPHTON

NUCLEAR TRAINING CENTRE

COURSE 135

.

This course was originally developed for the use of Ontario Hydro employees. Reproduced on the CANTEACH web site with permission

FOR ONTARIO HYDRO USE ONLY

NUCLEAR TRAINING COURSE

COURSE 135

- 1 Level
- 3 Equipment & System Principles5 ELECTRICAL SYSTEMS

Index

135.00-0	Course Objectives
135.01-1	Introduction to Symmetrical Components & Unbalanced Current
135.02-1	Unbalanced Currents: Their Effects
135.03-1	Further Examples of Electrical Protective Relays
135.04-1	Composite Electrical Protective Schemes: Part I
135.05-1	Composite Electrical Protective Schemes: Part II

135.00-0

Electrical Systems - Course 135

COURSE OBJECTIVES

- NOTE: Checkout Questions are based on Objectives and Assignment Questions.
- Unbalanced Currents

On completion of the Lesson the student will be able to:

- 1. State the relationships between positive, negative and zero phase sequence currents when the following faults occur.
 - (a) 3 phase (L-L-L)
 - (b) line-to-ground (L-G)
 - (c) line to line (L-L)
- 2. State the condition(s) which give:
 - (a) only positive sequence currents
 - (b) zero sequence currents
 - (c) negative sequence currents.

135.02-1 Unbalanced Currents: Their Effects

On completion of the Lesson, the students will be able to:

- Explain the effects produced by unbalanced currents in:
 - (a) generators
 - (b) induction motors
 - (c) transformers
- Explain how negative phase sequence currents can damage:
 - (a) generators
 - (b) motors

- 1 -

135.00-0

given the relevant data, be able to calculate the time that a generator rotor can withstand:

(a) a line to ground fault

- (b) a line to line fault
- 4. Explain how star/delta transformers affect the relationships between positive and negative phase sequence currents.

135.03-1 Further Examples of Protective Relays

On completion of the Lesson the student will be able to:

- 1. Explain the principle of:
 - (a) simple differential protection
 - (b) 'T' circuit differential protection
 - (c) differential protection with load restraint features
 - (d) differential protection with harmonic restraint features
 - (e) transformer gas relays
 - (f) transformer winding temperature detectors
 - (g) temperature measurement using change in resistance

.135.04-1 Composite Electrical Protective Schemes, Part I

On completion of the Lesson the student will:

- 1. Be able to state the four essential features for any electrical protective scheme.
- 2. Given the relevant diagram(s) be able to explain the ac and dc tripping and alarm circuits associated with
 - (a) busbars
 - (b) transformers

135.05-1 Composite Electrical protective Schemes, Part II

On completion of the Lesson the student will:

1 Given the relevant diagram(s), be able to explain the ac and dc tripping and alarm circuits associated with a turbine-generator.

J.R.C. Cowling